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I. PHYsicAL IMPEDANCE BoUNDARY CONDITION

We can now confidently state that the pair of coupled difference equations, that arose [61]
in the Kontorovich-Lebedev analysis of the actual Leontovich-boundary-condition wedge,
are a more complicated and therefore inferior version of William’s [7] formulae. Although
the literature has concentrated on the formulation of Maliuzhinets [6], an asymptotic eval-
uation of the Williams result to extract high frequency diffraction mechanisms would ul-
timately duplicate the work of Tiberio, et al [10], since the Williams and Maliuzhinets re-
sults are necessarily equivalent. Therefore, we will not be pursuing the physical impedance
boundary wedge anymore during the remainder of this grant.

II. INHOMOGENEOUS OR LINEARLY-VARYING IMPEDANCE BOUNDARY

Felsen’s 1959 (!) paper [66] presents a rather complete analysis and discussion of this
curious problem that I re-discovered in 1992 [61]. A thorough dissection and understanding
of Felsen’s work is required before any meaningful extensions or extrapolations can be
made. This has not been done to date, owing to our attention to the:

III. GENERAL PENETRABLE WEDGE

Since our previous quarterly report of 3 August 1993, and motivated partly by the
findings above for both cases of impedance boundaries, we have returned (again!) to the
truly penetrable wedge scatterer. A fresh, and in retrospect, logical approach starting
with a fundamental application of Green’s theorem, has yielded a surface integral equation
for a single unknown surface distribution. The kernel is specific to the wedge geometry;
the free-space Green’s function is not used. The radiation condition is invoked in both
regions, ensuring uniqueness of the integral equation solution. The unboundedness of the
penetrable scatterer is thusly the very feature of the physical problem that permits this
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formulation, while rendering integral equations developed [2-5,18-22,28,59] for finite bodies
inefficient and effectively nonapplicable.

To extract the physical solution from this exciting and mathematically sound formu-
lation of the boundary value problem, we are concentrating on a creative and physically-
motivated approach to these issues:
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11.

12.

13.

14.

16.

17.

(1) Choice of a suilable basis in which to expand the surface distribution. Convergence
of the solution, as well as physical interpretation and utility, is greatly enhanced
through an expansion that anticipates the actual physical behavior. In this problem
of a semi-infinite domain, the expected far (r — oo) behavior on the wedge surface
should be that of the

(2) Line-source excilation of the Sommerfeld half-space problem. All wave mechanisms
that we can asymptotically pull out of this simpler geometry and account for in
the wedge problem are valuable both computationally and conceptually.
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